\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
| (%i2) |
f
(
x
)
:
=
x
[
1
,
1
]
+
(
x
[
1
,
2
]
−
2
·
x
[
2
,
1
]
)
·
X
+
3
·
x
[
2
,
2
]
·
X
^
2
$
print ( "f" , matrix ( [ a , b ] , [ c , d ] ) , "=" , f ( matrix ( [ a , b ] , [ c , d ] ) ) ) $ |
\[\]\[\mbox{}f\begin{bmatrix}a & b\\ c & d\end{bmatrix}=3 {{X}^{2}} d+X\, \left( b-2 c\right) +a\]
| (%i3) | g ( x ) : = [ x [ 1 ] , ( x [ 2 ] − 2 · x [ 3 ] ) , 3 · x [ 4 ] ] $ |
| (%i5) |
Mf
:
transpose
(
matrix
(
g
(
[
1
,
0
,
0
,
0
]
)
,
g
(
[
0
,
1
,
0
,
0
]
)
,
g
(
[
0
,
0
,
1
,
0
]
)
,
g
(
[
0
,
0
,
0
,
1
]
)
)
)
;
print ( "f" , matrix ( [ a , b ] , [ c , d ] ) , "=" , ( matrix ( [ 1 , X , X ^ 2 ] ) ) . Mf . ( matrix ( [ a ] , [ b ] , [ c ] , [ d ] ) ) ) $ |
\[\operatorname{ }\begin{bmatrix}1 & 0 & 0 & 0\\ 0 & 1 & -2 & 0\\ 0 & 0 & 0 & 3\end{bmatrix}\] \[\]\[\mbox{}f\begin{bmatrix}a & b\\ c & d\end{bmatrix}=3 {{X}^{2}} d+X\, \left( b-2 c\right) +a\]
Created with wxMaxima.