\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
| (%i4) |
P
:
[
1
,
0
,
−
1
,
1
,
0
]
$
v : [ 1 , 1 , 2 , 1 , 0 ] $ w : [ − 1 , 0 , 0 , 1 , 1 ] $ A : transpose ( matrix ( v , w , [ x , y , z , t , u ] − P ) ) ; |
\[\operatorname{ }\begin{bmatrix}1 & -1 & x-1\\ 1 & 0 & y\\ 2 & 0 & z+1\\ 1 & 1 & t-1\\ 0 & 1 & u\end{bmatrix}\]
| (%i9) |
/* elegimos un menor de orden 2 distinto de cero y
anulamos el resto de filas */ A : rowop ( A , 1 , 2 , 1 ) $ A : rowop ( A , 1 , 5 , − 1 ) $ A : rowop ( A , 3 , 2 , 2 ) $ A : rowop ( A , 4 , 2 , 1 ) $ A : rowop ( A , 4 , 5 , 1 ) ; |
\[\operatorname{ }\begin{bmatrix}0 & 0 & -y+x+u-1\\ 1 & 0 & y\\ 0 & 0 & z-2 y+1\\ 0 & 0 & -y-u+t-1\\ 0 & 1 & u\end{bmatrix}\]
| (%i10) |
/*La variedad será la dada por las ecuaciones que nos quedan*/
[ A [ 1 , 3 ] = 0 , A [ 3 , 3 ] = 0 , A [ 4 , 3 ] = 0 ] ; |
\[\operatorname{ }\left[ -y+x+u-1=0\operatorname{,}z-2 y+1=0\operatorname{,}-y-u+t-1=0\right] \]
Created with wxMaxima.